Abstract Title: | Petroleomic Depth Profiling of Staten Island Soil by GC and FT-ICR MS |
Abstract Type: | Seminar |
Session Choice: | Energy & the Environment |
Presenter Name: | Ms Mary Thomas |
Company/Organisation: | University of Warwick |
Country: | United Kingdom |
Abstract Information :
The New York/New Jersey Harbor (NY/NJ) Estuary is in a region with one of the
highest population densities in the United States, with many heavy waste generating
industries based in the area. Unsurprisingly, the NY/NJ Estuary was ranked among
the most chemically contaminated waterways in the United States based on surface
sediment concentrations. Elevated body burdens of toxic substances including heavy
metals, petroleum hydrocarbons, and aromatic hydrocarbons have also been
detected in a wide range of aquatic wildlife.
Environmental samples, particularly those contaminated with petroleum-related
products, are highly complex. Using state-of-the-art analytical techniques,
comprehensive molecular characterization of petroleum-related samples can be
achieved. Following such analyses, unique fingerprints can be established for the
samples, allowing any transmission into the environment to be traced. The
characterization of petroleum-related samples using mass spectrometry has been
termed 'petroleomics', with the molecular formulae of tens of thousands of
components observed in a single spectrum.
In this study, soil was sampled at 5 depths in Staten Island, New York, with the aim
of correlating the compositional fingerprints of the petroleum extracts with the
history of the area. The extracts were profiled by a combination of gas
chromatography (GC) and Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR MS). GC provided a summary of the bulk properties of the
extracts including total petroleum hydrocarbon (TPH), polycyclic aromatic
hydrocarbon (PAH), and sediment toxicity (microtox) analyses. FT-ICR MS revealed
more detailed compositional differences between organic contributions at different
depths. The relative contribution from more highly oxygenated organic compounds
was found to increase as the sampling depth increased. Changes in the contributions
from sulfur-containing classes were also observed. Each individual component and
its contribution can be visualised further in a plot of double bond equivalents against
carbon number for each compound class.
The detailed molecular characterization obtained by FT-ICR MS coupled with the
bulk information determined by GC allows a fingerprint of the petroleum-based
contaminants of the soil to be developed. Petroleomic profiles of soil as a function
of depth allow contamination to be correlated with the site history, and aging of
petroleum-based compounds over time to be better understood.