HTC-15 - Abstract

Abstract Title: Characterization of Small Heterogeneities in Polymers by Analysis of UPLC/ESI-MS Reconstructed Ion Chromatograms
Abstract Type: Seminar
Presenter Name: Mr Ruben Epping
Co-authors:Dr Jana Falkenhagen
Company/Organisation: Bundesanstalt für Materialforschung und -prüfung (BAM)
Session Choice: Hyphenated Techniques for Comprehensive Analysis

Abstract Information :

From simple molar mass disperse homopolymers over copolymers to functionalized, 3-dimensional structures containing various distributions, the complexity of polymeric materials has become more and more sophisticated in recent years. With applications in medicine, pharmacy, smart materials or for the semiconductor industry the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, here a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. We used SEC for the separation because unlike other separation modes the separation in this mode solely should occur due to the hydrodynamic volume with no interference of other interactions. This simplifies the interpretation and the above mentioned heterogeneities should show a slight difference in hydrodynamic volume. ESI mass spectrometry can offer more than an access to mass dependent information like MMD, end group masses or CCD in polymer analysis. The online coupling to SEC allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible or accessible only by time consuming or expensive methods. Because these heterogeneities might vary with the molar mass, analysis of the whole MMD-Peak (here the total ion current (TIC)) would not lead to the desired information. The broadening of the chromatographic peaks in this case does not origin from the already well known band broadening factors in chromatography from diffusion. This band broadening is attributed to the nature and composition of the analyte itself. Surprisingly there is very little investigation into the peak width or peak shape due to analyte structure itself found in literature. It is also shown, that with proper calibration even quantitative information could be obtained. This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples we demonstrate the possibilities and limitations of this approach.